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Competing spatial and temporal instabilities in a globally coupled bistable semiconductor system
near a codimension-two bifurcation
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We study complex spatiotemporal dynamics in a globally coupled bistable reaction-diffusion model on a
two-dimensional spatial domain. It is demonstrated that complex behavior appears near a codimension-two
bifurcation point due to the competition of spatial and temporal instabilities. We derive sufficient conditions for
the appearance of mixed spatiotemporal modes, and clarify the origin of a menagery of complex dynamics,
such as periodic and chaotic oscillations of current filaments, low-dimensional spatiotemporal chaos including
a Shil'nikov attractor, and periodic back-and-forth motion of current density fronts. Such dynamics is found in
a wide range of domain sizes for square and rectangular domains. The type of dynamics is sensitive to small
variations in the domain shape. We discuss and explain the differences between spatiotemporal dynamics on
one-dimensional and two-dimensional domains.

PACS numbd(s): 05.70.Ln, 72.20.Ht, 85.36.z

[. INTRODUCTION which mixed spatio-temporal modes should be found. The
purpose of the present paper is to investigate those condi-
Spatially extended nonlinear dynamic systems may extions in a bistable system with a global mechanism of inhi-
hibit a variety of different instabilities. Complex spatiotem- bition given by an integral constraint imposed on the internal
poral behavior is expected if an instability breaking the spadynamics:
tial symmetry interacts with a temporal instability breaking
the time translation symmetfyl—16]. This is the case near du 1
the codimension-tw¢CT) bifurcation where those two insta- T gt KdeXdy ga(x,y,t),u(t)), ©)
bilities coincide. Recently the dynamics in the vicinity of
such bifurcation points of higher codimension has been in- ) ) )
vestigated theoreticallj13—16 as well as experimentally WhereJgdxdy denotes integration over a spatial dom&n
for various physica[9—11] and chemical systen{$—8]. A of areaA. Equation(3) replaces the local inhibitor E¢2).
widely studied system is given by the following two- N the model(1),(3) the inhibitoru(t) is a global variable

component activator-inhibitor system with local diffusive depending upon the spatially averaged activai(x,y,t).
coupling[1,2,15,16 The Hopf bifurcation of the uniform state remains as in the

locally inhibited model(1), (2), but instead of a spatial Tur-
sa ing instability at finite wavelengti;~ 1./, the system
Ta_r —ladatf(a,u), (1) (1),(3) experiences a long-wavelength instability which may
be regarded as limit case of a Turing instability fQr—oo.
The wavelength of the spatial instability is therefore de-
ru—uzlﬁAqug(a,u), (2)  termined by the system dimensian wherelg=2L andlg
ot =L for Neumann and Dirichlet boundary conditions, respec-
tively. The length scale of the asymptotic stationary pattern
wherea and u are the activator and the inhibitor, respec- evolving from the initial instability is determined by the glo-
tively, andr,, 7, andl,, |, determine the respective relax- bal constrain(3).
ation times and diffusion lengths. This system exhibits a Global coupling has been widely recognized as an impor-
codimension-two Turing-Hopf bifurcatidi2] where the con-  tant factor of spatiotemporal dynamics in extended systems
ditions of a spatial Turing instability17] with a certain  and studied for different mode[48—33. Equations(1),(3)
wavelengthl 1~ 1, and a temporal Hopf bifurcation with represent a basic model of a globally coupled bistable me-
a certain frequencw~ 1/{ 7,7, are met simultaneously. An dium which is relevant for current density dynamics in large-
amplitude equation analysi®,12,19 predicts the appear- area bistable semiconductor systef@9—33 and electro-
ance of mixed Turing-Hopf modes which represent periodicchemical systemB27], where global coupling is due to the
or chaotic oscillations of localized Turing patterns. Periodicexternal electric circuit, as well as chemical reaction systems,
mixed Turing-Hopf modes and chaotic transients precedingvhere global coupling may be light inducg2b] or imposed
the periodic asymptotic motion have also been found by divia the gas phage?2]. In this article we focus on the case of
rect numerical simulations on a one-dimensiofi&)) spatial  bistable semiconductors. Then E@{) determines the dy-
domain[16]. namics of an internal, spatially distributed variablg,y,t),
For a globally coupled system the Turing instability is wherex,y are the coordinates in the plane perpendicular to
suppressed, and little is known about the conditions undethe direction of current flovz (Fig. 1). The physical meaning
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a) b) <)

8 FIG. 1. (a) Sketch of a bistable semiconductor
operated in an external circuit with capacitance
J C, load resistanc® and biasU,. (b),(c) Null is-

4 colines of the model Eqs6),(7) in the (a,u)
f(a,u)=0 plane and the corresponding, () representation

2 in terms of the local current-voltage characteristic

[ J(u) (curve ) and the load linécurve 2, respec-
5 y 10 0 4 y 8 12 tively. ParametersT=0.05, J,=1.25.

—_

g(a,u)=0

of the variablea might be electron temperatuf8d4] or con- In the following we assume current-controlled conditions
centration of excess carrief85] in bulk semiconductors, (R—®, Uyg—», Uy/R—Jy), since these are known to
charge density stored in the quantum well of double-barrieprovide the most efficient global couplifg9], and use the
resonant tunneling structurd86,37,33, interface charge model functions

density in the heterostructure hot electron dip8g], or the

voltage across one of then junctions in thyristors —a

[39,30,33, etc. The variablea(x,y) together with the volt- f(auy=——-Ta, J(a,u)=u-—a, (5)
age dropu across the device determines the current density (u—a)+1

J(a,u) at a given point X,y). The respective uniform sta-

tionary current-voltage characteristi{u)=J[a(u),u] can originally derived for the heterostructure hot electron diode
be found using the conditiof(a,u)=0 to express(u). It  [38]. A nonpolynomial local kinetic function as, e.g., in Eq.
may result in either S-shaped or Z-shaped bistable characte(5) is typical for nonlinear charge transport in various semi-
istics J(u) [33]. The global coupling is due to the external conductor system$34,39,43. In dimensionless form, our
circuit in which the semiconductor system is operated, andnodel equationsl),(4) thus take the form

Eq. (3) takes the form of Kirchhoff's law:

du B _par 2 g (6)
rua=U0—u—RA<J(a;u)>, 7.=RC, at (u—a)’+1
1 du _ _
<J>EKdexdy1a,u), (4) a—a(Jo—Uﬂa)), a=AIC. (7)

whereR is the series load resistand@s the capacitance of Figures 1b) and Xc) depict the null isoclines of the system
the external circuitl, is the applied voltage, an@is a 2D  (6),(7) in the (a,u) plane, and the equivalent representation
spatial domain in the plane perpendicular to the direction ofn the (J,u) plane in terms of the S-shaped current-voltage
the current flow/see Fig. 1a)]. The modek1),(4), originally ~ characteristicJ=J(u) and the load-line, respectively. The
suggested for semiconductors with overheating instabilitiedatter representation is physically more intuitive and will be
[34], has been later advanced for a wide class of semicorised in the following. We consider rectangular spatial do-
ductor systems exhibiting both S- and Z-shaped bistabilitynains with transverse dimensiohg,L, and assume Neu-
(see Refs[29,33,4Q, and references therginn this paper mann boundary conditions. The dynamics is determined by
we focus on S-shaped bistability. The mod#),(4) can de-  two model parameters, Jo, i.e., the inverse relaxation time
scribe a menagery of spatial and temporal patterns in semdf the inhibitor u and the imposed current controlling the
conductors such as current filaments, transverse current degeneral excitation level, respectively, and the domain size
sity fronts, and spatially uniform current oscillatiopl]. A Lx,Ly. The parameteil controls the bistability rangeT
mixed spatiotemporal mode corresponding to large-=0.05 is used throughout the paper.
amplitude relaxation-type oscillations of a current flament The paper is organized as follows. In Sec. Il we consider
(spatiotemporal spikinghas also been found in this model the fixed points of the mod€(6),(7), i.e., uniform steady
for 1D spatial domain$38,42. states and stationary current filaments. We discuss spatial
The linear stability of stationary current filaments on 2D and temporal instabilities of those states and derive an ana-
domains has been studied analytically and numerid@8}  lytic criterion for the onset of complex spatiotemporal dy-
in the framework of the globally coupled mod@),(4). Here  namics. In Sec. Il we consider fully developed nonlinear
we investigate the nonlinear dynamical behavior of 2D cur-spatiotemporal dynamics on square domaibg=<(L,) and
rent density patterns, in particular in the vicinity of the CT analyze bifurcation scenarios leading to different regimes of
bifurcation point. We derive criteria for the onset of mixed intermittent and chaotic behavior. In Sec. IV we focus on
spatiotemporal modes and illustrate our findings by numerispatiotemporal dynamics in rectangular systerhg>(L,)
cal simulations of the model on 2D domains. We show thatnd, in the limit case oL,>L,, study dynamics on 1D
competition between spatial and temporal instabilities giveslomains. Hereby we elaborate and clarify the differences in
rise to complex spatiotemporal behavior of transverse currergpatiotemporal dynamics on 1D and 2D domains. In Sec. V
density patterns such as periodic oscillations of current filawe summarize our results and briefly survey alternative
ments, back-and-forth motion of current density fronts, asmechanisms of complex current density dynamics in bistable
well as various regimes of spatiotemporal chaos. semiconductors.
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FIG. 2. (a) Phase portraits of uniform oscillations fdg=1.5, L,=L,=20, and different values of. In the (J),u) plane spatially
stable and unstable limit cycle oscillations are shown by solid and long dashed lines, respectively, they become «tabl@5atThe
uniform fixed point(empty circlg is temporally and spatially unstable for the parameters ch@s#ital valuea,~0.068). The nonuniform
fixed point corresponding to a stationary filaméudl circle) loses stability aiv~0.0259. The uniform and the nonuniform fixed points are
given by the intersections of the load ligé) =J, with the uniform(unstable parts: thin dotted line, stable parts: thin solid)lemed the
filamentary(thin solid ling current-voltage characteristics, respectivély.Phase portrait fody=1.5, L,=L,=20, «=0.023. The trajec-
tory spiralling out of the nonuniform fixed point depicts an oscillatory instability of the stationary filament evolving into a uniform limit
cycle. (c) Spatiotemporal plot of the trajectory depicted(b). The current densityJ(x,y,t)), averaged over thg coordinate is shown.

Il. FIXED POINTS AND THEIR BIFURCATIONS =u(t)+du(t), where sa(t), u(t) are the amplitudes of per-

A. Uniform steady state turbations with wave vectdt= 7rn/L, wheren is an integer.

In this section we consider spatially uniform and nonuni—ThIS yields

form fixed points of our system and analyze their possible N
bifurcations. The uniform steady statag(up) is given by —da(t)= (?af(t)—(—
f(ag,ug)=0, J(ag,Ug) =Jp and corresponds to the intersec- dt L
tion of the load line with the uniform current-voltage char- - -~
acteristic [Fig. 1(b)]. A linear stability analysis of Egs. Jauf(t) =035 ,f(@(t),u(t)), (10
(6),(7) shows(e.g., Ref[41]) that this state is unstable with

2
da+a,f(t)éu,

respect to spatlally. mhomo.geneous fluctuations leading to a — Su(t)=—a du. (11)
stationary current filament if dt
2 . . _ 3%-1 T Hered,f(t) andd,f(t) are periodic functions in time. Since
L <dal, Ja |(ao’uO)_ (1+J3)2 ' the relaxation dynamics afu is uncoupled fromda, a suf-

ficient condition for spatial instability of the limit cycle can

be written as
L=ma{L,,L,]. ) i

2
v —_—
The conditiond,f>0 is met for the middle branch of the (f) <daf(t). (12
current-voltage characteristi29] which is consequently un-

stable for sufficiently largé.. The minimum system size Note that Eq.(12) resembles Eq(8). If condition (12) is
=Ler(Jo) =/ 9,f which allows for a transverse instability satisfied for the uniform fixed pointag, o), it is also satis-
depends od. A transverse instability is never possible for fied for uniform limit cycles of sufficiently small amplitude
L<Lmin=11.5 for the value off =0.05 chosen. Thukmin  which have bifurcated from this fixed point. Therefore small-
has the meaning of a critical transverse diffusion length angymplitude limit cycles near the bifurcation threshold are al-
represents a natural scale for the sizg L, of the spatial \ays spatially unstable. For limit cycles of arbitrary ampli-

domain. . . tude the sign o'%r:"f—(w/L)2 is not fixed and one should
The.unlfor'm steady state ’.UO) m?‘y.a'so experience a apply a Floquet analysis, or simply integrate EH0) over
Hopf b|furca_t|on _Ieadmg to_un_|fc_)rm I|lrr_1|t-cyc_le_ oscillations one period to evaluate stability. For the limit case of large-
I[ZT]? itl.?)lfg:lon time of the inhibitoa* is sufficiently slow z;_njplitude relaxation oscillations with<<d,f the spatial sta-
ility can be demonstrated by the following Heuristic argu-
ment. For such oscillations one cycle in phase space consists
a<daf. ©) of slow stages corresponding to relaxationwflong the
stable branches of the uniform current-voltage characteristic
We denote the critical value byu(Jo)E(?af. The oscillation a:aon(u) and a:aoﬁ(u)’ and fast stages Corresponding to
amplitude increases with decreasimdFig. 2@)], and even-  fast relaxation ofa at u=const. Since’,f<0 for a=ag,
tually typical nonlinear relaxation oscillations are estab-and the contribution of fast stages can be neglected when
lished. These uniform limit-cycle oscillations can be unstabléntegrating Eq.(10) over one period, we see that the pertur-
with respect to transverse spatial perturbations. Let us lineabation a decreases. The transition from spatially unstable to
ize Egs.(6),(7) in the vicinity of the limit cycle solution  spatially stable limit cycles with increasing amplitude is il-
a(t), u(t), assuminga(x,t)=a(t) + sa(t)cos@@nx/L), u(t) lustrated in Fig. 2a). Figures 2b), 2(c) visualizes the tran-
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FIG. 3. Stationary corner filamenta) and
edge current layeib), and the associated current-
voltage characteristics foL,=L,=20 (c) and
L«=L,=50(d). Branches corresponding to trans-

corner |_x=|_y=20 versally unstable edge current layers are marked
< by dotted lines. The uniform S-shaped current-
3 edge 4 voltage characteristic is also shown.
) )
2 2
9 u 10 11 9 u 10 11

sient leading from a temporally unstable stationary filamentontrol parameted,, and the stationary patterns have small

to a stable uniform limit cycle. modulation amplitudes. With increasihghe bifurcation be-
comes subcritical, resulting in large-amplitude pattémg.,
B. Stationary current filaments see Refs[44,45]). Sweeping the currenl, up and down

. ) . . _ then leads to hysteresisee Figs. &),3(d)]. It is important
The stationary current filament bifurcating from the uni- 5 note that large-amplitude patterns arising via subcritical
form steady state according to E@) may be stable or un- pq,rcations cannot be appropriately described by analytical

stable. A necessary condition for stability of a filament on &gchniques based on expansions near the uniform reference
convex 2D domain in the regime of strong global couplinggisia f,,Uo), such as the amplitude equation formalism.

(R—ce) is that the differential conductance of the filament  1hg jinearized dynamics near the nonuniform stationary
og=A(d(J)/du) is negative and the extrema of the current yaiems will be shown to have a crucial impact on the pos-
density distribution are located at the boundary of the do;pility of complex spatiotemporal behavior, and we shall
main[29]. Multifilamentary stateswith several extremaare 4y discuss it in some detail. Both corner filaments and edge
unstable according to the winner-takes-all princip®]; ¢y rrent layers are unstable in the voltage-controlled regime.
filaments with an extremum inside the domain are unstablg;g instability is due to a single unstable eigenmode
with respect to translation and are eventually attracted by tthl(x,y) with eigenvaluex,>0 [29], corresponding to the
boun_dariei2_9]. O|_1 a rectangular domain_station_ary C“”e”t“ground state.” HenceV',(x,y)=0 and it is associated with
density configurations are either comer filamelfi®. 3@]  eynansion or shrinking of the current filament. The second
or edge current layerfFig. 3(b)]. The respective current- eigenmode W,(x,y) has a negative eigenvaluk,<O.
vqltage characteristics are shown in Figée)3(d) for two W, (x,Y) changes: sign in the interior ot the domang., on
different systems sizeg,=L,=20 andL,=L,=50. The 5 1p gomain it has one nodand corresponds to softening

corner filame_nt is stable i_n the Whole_ interval of currents. sharpening of the current density profile near the filament
With increasing system size the continuous branch of th%order. Sincel ,(x,y) is not of fixed sign, it cannot be ef-

current-voltage characteris:tﬂEig. 3] _splits into two Sepa- fectively suppressed by an integral constant. In particular,
rate bra_nches corresponding to a Kigh cgrrent den;ﬂ’,y this mode describes the very last stage of current filament
corner f_llament and a coldow current dens_|t)/corner f|Ia-_ growth from the uniform state. In the presence of global
ment [Fig. 3(d).]‘ The edge_ current layer is unstgble W'th oupling the eigenvalues generally become complex. The
respect to spatial perturbations which break the uniformity ot ,qeq are then mixed by coupling, but they still provide
the current density dlstrlbut|on along _thems, Frgnsfgrmmg_ intuitive insight into the linearized dynamics of the globally
the edge current layer into a corner filament if its dlfferentlalCoupleol systerfi2g]. In the regime of strong global coupling

conductanceoy is sufficie_nt_ly low. Unsta_ble_ parts of the (as forR—c) the first modeW(x,y) is suppressed by the
current-voltage characteristic are shown in Figs),3(d) by 104 constraint imposing conservation of the total current,

dotted lines. On rectangular domains,>Ly) one should s ¢ gufficiently smalle an oscillatory instability due to

distinguish between edg_e current layers parallel to the Iongne delay in the inhibition is possible. If only the lowest,
and short edge, respectively. Generally, the latter ones ag stable eigenmod® ,(x,y) is taken into account, the gen-
more stable. Fok, <Ly, only edge current layers parallel 10 oo criterion for the oscillatory instability of a current fila-

the short edge are possible and, generally, any type of curreflant d ibed by Easl) (4) is qi by 29
density distribution becomes uniform along thexis which ent described by Eq¢1),(4) is given by[29]

renders spatiotemporal dynamics effectively one dimen- —o,tCN /7> R™L, a.=A{d,J(a,u)). (13
sional. The type of bifurcation leading to a stationary current

filament depends on the system dimensions.LEgL ,, close

to Ly, this bifurcation is supercritical as a function of the For our model(6),(7) this criterion takes the simple form
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C!<)\1. (14)

We denote the critical values by;,=af(Jy,L) and
@§(Jo,L) for corner filaments and edge current layers, re-
spectively. In the one-mode approximation the eigenvalue

is connected to the differential conductance of a filamgnt
by the approximate expression

<‘9uf'\P1><‘9a~]'lP1>
N '

(19

gyg=~=0,—

[Note that Eqs(14), (15) are also applicable to the uniform
state on the middle branch of the current-voltage character-
istic; in this case¥ =1, A\;=4,f.] For a sufficiently large

system, on the middle part of the filamentary bramchis 0.01
negative and of large absolute value, and thereforeis o
small. The physical reason for this is as follows: the current

filament has a sharp profile with a narrow transition layer 0.0001

connecting flat on- and off-states. In an infinite system such
a profile would be of neutral stabilityn(=0) due to trans-
lation invariance. In a finite systeiy becomes positive due - ) _ _1p .
to the interaction with the boundaries, but remains small. Ag, /G- 4 (& Minimum system sizé., = m(d,f) = allowing for

result, an oscillatory instability of such a nonuniform & SPatidl instability of the uniform steady state as a functiodgof
a ' . (b) Thresholds for oscillatory instabilities of the uniform fixed point
steady state occurs fag;=\, which is smaller than the

o _ . ; . o [au(Jo), curve 1, corner filamentga [ Jg,L.(Jo)], curve 3 and
critical valuea,= d,f leading to an oscillatory instability of edge current layeréad Jo,Lo,(Jo)], curve 3 as a function of the

the uniform state. Thus fon¢<a<a, there is bistability et density, for 2D square domains. The threshold values of
between a stationary filament and uniform relaxation oscilla, are shown at both codimension-two points) Thresholds for
tions. With decreasing the stationary filament experiences oscillatory instabilities of the uniform fixed poiite, [ J5(L)], curve
an oscillatory instability, but in general the current density1), corner filament§aS[J3(L),L], curve 2 and edge current layers
oscillations eventually become uniform, and no compIeX(agf[Ja(L),L], curve 3 as a function of the system side=L,
spatiotemporal behavior arisg9,30,33. This scenario =L, at the lower codimension-two poifdouble-logarithmic plot
should be regarded as typical for the oscillatory instability of
a stationary filamenFigs. 2b),2(c)]. mixed spatiotemporal modes appear near the CT point if the
However, this conclusion holds only for wide filamentary following condition is met:
patterns with sharp boundaries and is not applicable to nar-
row filaments whose differential conductanag might be ay<af®(Jp,L) 17)
comparable to that of the uniform unstable branch of the ] )
current-voltage characteristisee Figs. &),3(d)]. For such  for both corner filament and edge current layers. Indeed, if
narrow filaments both situationg < a, ande,< a; are pos- th*e CI’IIGI’ISQ (1]) is satisfied ther_e is a parqmeter_ window
sible. Also, a stationary filament might be stable with respecttu<a<ai(Jo,L) where the uniform state is spatially un-
to small perturbations«> ;) but unstable with respect to s_table(but temporally stat_)le with respect to uniform fluctua-
sufficiently large ones. In this case its basin of attraction idions) and the stationary filament is temporally unstable, thus
bounded by an unstable periodic orbit which corresponds tée System has no fixed point attractors.

a breathing filament. This case has been discussed in detail in The dependencies{ [ Jo,L.(Jo)] have been calculated
Ref. [42] for 1D domains. numerically at the CT point for corner and edge filaments on

square domain and are shown together witlfJy) in Fig.
4(b). The criterion(17) is met only near the left one of the
two CT points, which corresponds to the lower value of cur-
The conditions for spatial8) and temporal9) instabili- rent Jj. In  Fig. 4c) the critical values
ties. of the uniform 'fixed_ pointl may coincide in a aPJI3(L),L], ay[J5(L)] calculated at the CT point are
codimension-twdCT) bifurcation point denoted by a super- presented as functions f The criterion(17) is satisfied in
script star: the interval 14 L <270. This implies that complex spa-
-\ 2 tiotemporal behavior occurs neither for small-amplitude pat-
a*:au(Ja):(_) ) (16) terns atL~L i, nor in large system&>L ,. Generally,
L ailay,—0 for L—oo since the asymptotic behavior af;
~exp(—L/Ly is exponential[29] but a[J5(L)] decays
For givenL =max(L,L,) =L, this happens for two values algebraically as ~2.
J5 which are defined by Eq8) and located near the turning  The criterion(17) can be also reformulated without direct
points of the current-voltage characteristicjgt=1.12 and  reference to the CT point. For gively andL,,L, complex
Jo=4.09, respectivelyfsee Fig. 4a)]. Periodic or chaotic spatiotemporal behavior occurs if

10 14 L 100 270

C. Codimension-two point in the parameter space
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0.04 b)
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0
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FIG. 5. Regime of complex spatiotemporal dynamnficatched
in two projections of the Jp,«,L) parameter space for square do-
mainsL=L,=L, . The curve of codimension-two points, H36),
is shown as the solid line without circles. ) oo
ay(Jo)<a<af®(Jo,L) and L>L(Jo). (18 “a:
. ec . L 0.03 s v stationary filament -
In the opposite case;"<a<a, we expect bistability be- uniform oscilation -
tween a stationary filament and uniform oscillations but no periodic 2D-motion -
. chaotic 1D-motion +
mixed modes. L,=20, L,=17 chaotic 2D-motion -
The criteria(17), (18) represensufficientbut not neces- 12 Jo 18

sary conditions for the onset of complex spatiotemporal dy-

namics. Generally, complex dynamics can also occur for FIG. 6. Regimes of complex spatiotemporal dynamics in the
as<a, if the stationary filament is stable only with respect (@.Jo) plane. The boundaries of spatial instability of the uniform
to small fluctuations but unstable with respect to large onegteady state&p,uo) (curve 3, Hopf bifurcation of the uniform
(which implies an unstable periodic orbit forming the bound-Steady statécurve 2, spatial instability of uniform limit-cycle os-
ary of its basin of attraction Complex dynamics can also glllatlons (curve 3, and gsglllatory instability of statlongry current
result from the spatial instability of uniform limit-cycle os- filaments(curve 4 are indicated(d) 2D square domairL=L,
cillations but not of the uniform fixed point and can thus — 20 (comer filaments (b) quasi-1D domait., =20, L,=5 (edge
occur for a<a,<a;. Special attention should be given to current layers (c) Rectgngqlar dom‘."“n with, =20, Ly=15; the
the situation when Eq17) is satisfied only for one type of spatiotemporal dynamics is effectively 1[edge current layer

. ; ¢ o' mods for small o and 2D filament large a.
Statlonary patterns. DeSpIte these restrictions, the Crlterlfrino 9 for smaller an (corner filament modefor arge

(17), (18) are important for understanding the origin of com-  complex spatiotemporal dynamics on square domains is
plex spatiotemporal dynamics. In the following sections weyays associated with a corner filament: the current density
will compare our theoretical predictions based on these crigistribution is symmetrical along the diagonal of the domain

teria with numerical simulations, and will show that the cri- and the maximum is located in one of the corners. The dy-

terion (17) always applies. namics generally includes two coupled modes: a nonuniform
mode associated with a stationafiyot necessarily stable
. COMPLEX SPATIOTEMPORAL DYNAMICS filament and a uniform mode associated with damped or
ON SQUARE DOMAINS limit-cycle oscillations. This indicates the low dimensional

character of spatiotemporal dynamics.

Figure 6 gives a more detailed account of the different

In this section we survey spatiotemporal dynamics orvegimes of dynamic behavior. Figuréa specifies points in
square domaind,=L,=L. Equations(6),(7) have been the («,J,) parameter space where stationary filaments, uni-
solved numerically using slight perturbations of the unstablégorm limit cycle oscillations, and periodic or chaotic spa-
uniform state &,,Up) as initial condition. The regime in the tiotemporal dynamics are found fag=L,=20. The bound-
parameter spacel,a,L) where complex current density aries of the spatial(curve 1) and temporal (curve 2
dynamics—Dboth periodic and chaotic—is found is hatched irnnstability of the uniform fixed point, of the spatial instability
Fig. 5. This regime is located in the vicinity of the curve of of uniform oscillations(curve 3 and of the temporal insta-
codimension-two pointsl6) where spatial8) and temporal  bility of stationary corner filament&urve 4 are also shown.
(9) instabilities of the uniform fixed point coincide. In accor- The location of these boundaries clearly indicates that com-
dance with our theoretical prediction, complex spatiotempoplex spatiotemporal dynamics occurs due to the spatial insta-
ral behavior occurs only near the CT points corresponding t@ility of the uniform fixed point at the left boundary, and via
the lower value oflj, where the conditiorf17) is met, i.e., instability of the uniform limit-cycle oscillations at the lower
near the right turning point of the S-shaped current-voltagéoundary. The corresponding boundaries of stabityrves
characteristi¢ Fig. 1(c)]. 1 and 3, respectivelystrictly coincide with the respective

A. Survey of different regimes in the parameter space



1784 S. BOSE, P. RODIN, AND E. SCHO. PRE 62

o)

8

W \

12

10000

u11 u11 \/ N V \

6000 t 9000 6000 t 9000

FIG. 7. Spatiotemporal dynamics visualized by phase portraits {), spatiotemporal plots of the current densif{x,y,t)), averaged
over they coordinate, and time series of the voltage). (a) Periodic breathing(b) periodic spiking of a corner current filament on a 2D
square domainl(,=L,=20, «=0.04). Parameter&®) Jo=1.29,(b) Jo=1.21.

boundaries of the numerically found regime of complex dy-crease a®\~ \Jg' — Jo. In the case of a subcritical bifurca-
namics for allL. At the upper boundary the transients of tion the onset of breathing occurs with finite amplitude and
complex behavior are associated with the oscillatory instabilthe stationary filament remains stable: in this case a stable
ity of a stationary filament. However, the respective curve 4breathing limit cycle appears simultaneously with an un-
does not exactly coincide with the boundary of complex dy-stable breathing limit cycle which bounds the basin of attrac-
namics forL=20. This indicates that the instability of a tion of the stable stationary filament.

stationary filament occurs via a subcritical Hopf bifurcation, ~ Periodic spiking denotes the periodic formation and sub-
and there is bistability between a stationary filament and pesequent disappearance of a current filanhEig. 7(b)]. Typi-
riodic oscillations of a filament. For smallér(e.g.,L=18)  cally, between two spikes uniform small-amplitude damped
this bifurcation becomes supercritical and the regime of pi.oscillations occur. In the parameter space spiking appears
stability disappears. With increasirigthe regime of com- With increasingJ, following the uniform stateFig. 6a)].

plex spatiotemporal dynamics in the parameter space shrinka1king is found when the uniform fixed point is spatially

but the relative fraction corresponding to bistability expandsUNSt@PIEL[L>L¢(Jo)] but experiences no oscillatory insta-
Complex dynamics does not (E)ccur ng 270 y exp bility. The stationary filament can be either unstable or stable

. L . for the parameters corresponding to spiking. In the first case
Note that the phase diagrams in Fig. 6 depict only the;the spiking mode is the only attractor, in the latter case there

asymptotic dy”a”?'c.s: which can be reached using the UNis bistability between two asymptotic states with different
form state as an !n|t|a[ .condmon. For some paramete'rs thf)asins of attraction, but quasi-uniform initial conditions al-
system exhibits bistability between different asymptotic "€ ways lead to spiking.
gimes. Using a stationary filament as initial condition, one gjince the breathing mode results from a Hopf bifurcation
can detect bistability between stationary filaments and peripf the stationary filament, it does not essentially interact with
odic oscillations of current filaments, as mentioned aboveyniform modes related to damped or self-sustained oscilla-
and bistability between periodic oscillations of current fila- tions. In contrast, spiking emerges from a spatial instability
ments and stable uniform limit cycles. The latter occurs onlyof the uniform steady state and its spatiotemporal dynamics
in a small regime of parameters near the intersection of curvenay include slow linear stages when the current density dis-
4 (temporal instability of current filamenand curve 3spa-  tribution is nearly uniform. During those stages the system is
tial instability of uniform limit-cycle oscillations Generally, sensitive to noise, and in large systems the period between
domains of bistability are found to be small compared to thespikes is likely to be determined by noise rather than by the
whole regime of complex spatiotemporal dynamics. In theinternal dynamics. By changing the parameters, one can con-
following subsections we describe periodic and chaotidinuously transform breathing and spiking into each other, as
modes of Comp|ex Spatiotempora| dynamics which can béor instance.in the left upper Corner of the phase dia.gram.in
observed on square domaibg=L, . Fig. 6a), or induce chaotic dynamics. Chaotic scenarios will
be discussed in the next subsection. Breathing is the only
type of spatiotemporal dynamics which is observed lfor
close toL iy, Whereas spiking prevails with increasihg
Periodic spatiotemporal modes may occubesathingor Breathing has been previously reported to occur in other
spiking current filamentgFigs. 7a) and 1b), respectively. models for current filamentation in semiconductp46,47,
It is illustrative to visualize the different types of spatiotem- with modifications which include drift terms with first order
poral dynamics in terms of their orbits in the projected phasepatial derivatives in Eq(1). Within the universality class
space (J),u), in addition to invoking spatiotemporal plots covered by mode(l),(4) it has been observed before only in
and time series. 1D simulations with a concentration-dependent diffusion co-
Periodic breathing represents a limit-cycle oscillation oféfficient[48]. Spiking has been originally obtained(i88,42
the current filament amplitudgFig. 7(@]. In the parameter ©0n 1D domains. It has also been found experimenfal§}.
space periodic breathing follows upon stationary filaments
with decreasingy and/orJy. The Hopf bifurcation of a sta-
tionary filament leading to the onset of breathing can be
either supercritical or subcritical. In the case of a supercriti- Both breathing and spiking may become chaotic via pe-
cal bifurcation the amplitude of the breathing mo#leén-  riod doubling[Figs. 8a) and &hb), respectively. Breathing

B. Periodic spatiotemporal dynamics

C. Chaotic spatiotemporal dynamics:
Period doubling, Shil’nikov chaos, and intermittency
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exhibits period doubling with decreasing if Jg is suffi-
6 Wy ciently large, and spiking does so with increasihgif « is
sufficiently small(see phase diagram in Fig).6
In the parameter regime corresponding to chaotic breath-
ing there is a window where Shil'nikov chaps0] is found
= 10000 (Fig. 8). In this window the stationary filament corresponds
to a homoclinic saddle focus. The spatiotemporal dynamics
in the vicinity of this fixed point can be understood in terms
of linear eigenmodes of the stationary filamani(x,y) and
¥,(X,y). The oscillatory instability is associated with an un-
stable {;>0) ground-state eigenmod&,, corresponding
to the voltage-controlled regime=const. In the globally
coupled regime, this mode is not suppressed by the global
constraint for sufficiently slow inhibition¢<\,), and two
complex conjugate eigenvalues-iw with y>0 arise. The
stable manifold of the saddle-focus is associated with the
stable {,<0) eigenmode¥, which dominates the forma-
tion of a current filament. Near the bifurcation poiuats a4
10 y 11 the spiralling-out of the trajectory from the homoclinic
" saddle-focus along the unstable manifold is slow compared
u v\/\’\/V\\/v\/v\/v\/vvv\/V\/ to the return along the stable manifold, and therefore the
10 Shilnikov condition[50] y<|\,| holds, which ensures the
6000 t 9000 existence of a chaotic attractor in the vicinity of the ho-
moclinic orbit. The full dynamics includes two different
stages, corresponding to motion along the stable and unstable
manifolds of the saddle focus, respectively. The first, slow
stage corresponds to breathing with slowly increasing ampli-
tude; eventually the amplitude of breathing reaches the uni-
43000 form fixed point in the projected phase spa¢d)(u), and
the current density distribution becomes almost uniform.
During the next stage a rapid increase of transverse spatial
perturbations returns the system to the unstable filamentary
state. Such behavior can be observed in the tiny parameter
regime near the point where the conditions for temporal fila-
t 45000 ment instability and transverse spatial instability of a limit
cycle coincide.
filament on a 2D square domai.(=L,=20, «=0.04). Param-  [Fjg. g(g)] chaotic dynamics emerges \iigermittency[Figs.
eters(a) Jo=1.27,(b) Jo=1.23.(c) Special case of chaofic breath- g(5) g()] due to the spatial instability of the uniform limit-
ing due to a homaclinic orbitShil'nikov chaos. The saddle-focus — ¢ycje Near the bifurcation line the respective intermittent
cor_rispogds io a weakLIy_ulr_lst_agle statlonalry f||am_en|t:._ Pa;rameter'segime resembles chaotic spikingig. 9a), see also Fig.
Jo=1.302, =0.0368, L,=L,=20. Same plots as in Fig. 7. 8(b)]. A similar intermittent regime has been found and ana-
lyzed in 1D simulationg42]. More sophisticated dynamics
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FIG. 9. (a) Intermittent spiking of a corner filament on a 2D square domain induced by a spatial instability of a uniform limit cycle.
Parametersly=1.25, =0.032, L,=L,=20. (b) Low-dimensional chaos induced by a temporal saddle-type instability of a corner fila-
ment combined with a spatial saddle-type instability of a uniform limit cycle. Paramifer$.28, «=0.035, L,=L,=20. Same plots as
in Fig. 7.
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the on-state continues approximately as longuas larger
than a critical valuel. which is correlated with the radius of
the stationary corner filamefgee Refs[46,2Q for a similar
case in a drift-diffusion modgl In the third stage, the volt-
ageu drops belowu. and the direction of front propagation

is reversed: now the on-state shrinks and finally disappears.
For planar fronts an analogous scenario exists,gnebrre-
sponds to the voltage., where the on- and off-states coexist
with a planar boundary; it is defined by the equal areas rule
[33,35

* /‘\ 11
‘\ gV
oa 2 f f(a,uc,)da=0. (19
. S0 ; 20000 agt
FIG. 10. Periodic back-and-forth motion of a current densityHere a,,, a.s are the values of the variabkefor on- and
front on a 2D square domain. Parameterg=L,=150, o off-states, respectively. In the last stage, the dynamics is
=0.005, Jo=1.13. In the simulation spatially random persistent quasi-uniform and the system returns from the off-state to its
noise (amplitude sa=0.0001, interval between perturbatio@ initial unstable stated,uy). The relaxation of the current
=1000) is added to trigger the instability of the uniform state. Thedensity distribution to the quasiuniform state is faster than
3D snapshots of the current density profilex,y) are shown for  the relaxation of the voltage, hence during the last stage of
timest=15 300, 15360, 15430, 15500, 15600, 15700, 15800, the |imit cycle the phase trajectory closely follows the off
15900, 16 000, 16 100, 16 30ffom upper left to lower right The  pranch of the current-voltage characteristic. The nonuniform
phase portrait(J),u), and the time series(t) is also depicted.  component of the current density distribution decreases and
becomes very small when the system eventually reaches the
unstable uniform stateag,ug). As a result, the subsequent
onset of the transverse instability is slow and the interval

two saddle orbits \{wth slow motion along their reSPECtive o tween consecutive spikes is large in comparison with the
unstable manifolds: a spatially unstable uniform limit cycleduration of a single spike. This implies that the period is

and. a Femporally unstaple filament. .Quasmnnfornj perloqmactually determined not by internal dynamics but by persis-
oscillations and a breathing current filament with increasin

; 85Nt noise which should be taken into account in a realistic
amplitude alternate at random. The example shown in F'gmodel

9(b) combines features of both Shil'nikov chafdsg. 8(b)]

sets on if an oscillatory instability of the stationary filament
also comes into plajFig. 9b)]. In this case the system has

) . ) . e Previously[30,32,33 we suggested that in bistable sys-
and intermittency Fig. 9a)]. Whereas in the vicinity of the tems with one global constraint a purely temporal oscillatory

;Jnlform I|_m|t c.ycl(ra] th? _dytnaTltchs |oo§§| a.?, L Intermlt;jinstability of a current density front generally does not lead
ency regime, in the vicinity of the saddle focus corresponds,, limit-cycle motion of the front but eventually evolves into

ing _to the stationary filament we observe the relatively slow niform oscillations. In contrast, our present findings reveal
oscillatory escape and fast return of the trajectory typical o hat limit-cycle front oscillations are possible near

Shil’_nikov chaos{Fig. 8(b)]. The parameters corr_espo_nding codimension-two points both on 2D and 1D domains.
to Fig. 9b) have been specifically choosen to visualize the

structure of the chaotic attractor in the most transparent way:
the system has a heteroclinic orbit connecting the saddle fdV. COMPLEX SPATIOTEMPORAL DYNAMICS ON
cus with the saddle limit cycle. Nevertheless, in the general RECTANGULAR DOMAINS

case the presence of two saddle orbits provides the basis for

a variety of chaotic scenarios which dominate in the param- On rectangular domaind.(>L,) mixed spatiotemporal
y . P modes can be associated with both corner filamghig.
eter regime corresponding to chaos for 20.

3(a)] and edge current layefEig. 3(b)] parallel to they axis.
For L, <L, the current density is always uniform along the
y axis rendering the dynamics effectively one-dimensional.
The regime of parameters corresponding to complex spa- Let us now consider dynamics on 1D domains in more
tiotemporal dynamics shrinks asincreasegsee Fig. 5, and  detail. We recall that filaments on a 1D domain of length
the periodic spiking mode is the only one to survive in largecan be identified with edge current layers on a corresponding
systems. The spiking mode then starts to include expandingD domain withL,>L, . Complex spatiotemporal dynamics
and shrinking of the filament as an intermediate stage beon 1D domains is found in a much larger parameter regime
tween its nucleation and disappearance. For large systentisan on 2D domains with the sarhg [see Fig. @)]. This is
(L>Lpyn the dynamics takes a well-pronounced form of entirely due to the shift of the upper boundagurve 4,
back-and-forth motion of current density frontBig. 10.  which is associated with the temporal instability of the sta-
This limit-cycle consists of four stages: first, the uniform tionary filament. This shift means that corner filaments on
intermediate stateag,up) looses stability with respect to 2D domains are more stable with respect to oscillations than
transverse spatial perturbations and a small nucleus of thED edge current layers for the same valudgf of>af, as
on-state(with characteristic siz& ,;,) embedded in the off- can be seen in Fig.(8) in the relevant range af,. This also
state is formed. In the second stage, the on-state expands Vi@lows from the current-voltage characteristics shown in
the propagation of a current density front. The expansion ofig. 3 since the eigenvalues are connected to the differential

D. Limit-cycle oscillations of a current density front
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conductancery via Eq.(15). As a result, the sufficient con- points of the S-shaped current-voltage charactefisée Fig.
dition for complex behaviow;> «, can be met for 1D but 1(c)], but the conditior{17) is met only near the one with the
violated for the corresponding 2D domain. We emphasizéower value ofJ,.
that the major difference in global dynamics on 1D and 2D  The nonlinear dynamics has been studied numerically on
domains is caused by quantitative changes in the linear dysquare and rectangular 2D domains, including as a limit case
namics near the stationary spatial structure, rather than neap domains. In all cases complex spatiotemporal dynamics
the uniform state 4o, Uo). _ ~ combines only two modes: the nonuniform mode related to a
Any 1D mode of complex spatiotemporal dynamics stationary current filament, i.e., a corner filament or an edge
which occurs for a giverL, <Ly, also exists for amLy,  cyrrent layer, and a uniform mode related to damped or
>Lmin- Those 1D modes have been found transversally Ungmit.cycle uniform oscillations. We have found three major
stable forL,<L,. However, they may become stable for yynes of periodic and chaotic spatiotemporal behavior:
Lx>Ly>Lmin- A typical phase diagram for a rectangular periodic breathingof a current filament which appears as a
domain is shown in Fig. @). The regime of complex spa- result of a subcritical or supercritical oscillatory instability of
tiotemporal behavior is a subset of the respective regime foj stationary filament and may evolve into a chaotic mode via
the 1D system with the santg [Fig. 6(b)]. Both 1D and 2D period doublingyii) spikingof a current filament which re-
modes are possible. 1D oscillations of edge current layergy|ts from the spatial instability of either the uniform steady
occur for low values ot [Fig. 6(c)]. With increasinge We  state or uniform limit cycle oscillations. A special case of
observe chaotic and periodic breathing of corner filamentsghaotic breathing appears when the system has a homoclinic
and the upper boundary of this regime matches the boundagypit which is connected to a saddle focus corresponding to a
of stability of the corner filament rather than that of the edgeweak|y unstable stationary filameriShil'nikov attractoy.
current layer. The transition from 2D complex oscillations of opngther type of chaotic oscillations appears when two
corner filaments to 1D complex oscillations of edge layerssaddie-orbits—temporally unstable filament and spatially un-
starts when the deviation from the square shape is smadtaple uniform limit cycle—interactiii) We have also found
[(Lx—Ly)<Ly,Ly] and is associated with an abrupt changeperiodic limit-cycle oscillations of current-density fronts re-
of the type of spatiotemporal behavior, e.g., chaotic oscillasylting from a spatial instability of the uniform steady state
tion may be substituted by periodic ones, and vice versgp large systems.
This m|ght indicate that Spatiotemporal behavior on 2D do- We have shown that Spatiotempora' Spiking, which has
mains is generally not robust with respect to small variationgyreviously been found only in 1D simulations of the model
of the domain shape. (6),(7) [38,42,49, is part of a much wider class of complex
spatiotemporal modes which have been reported here for the
first time. On square domain& (=L,) the only nonuniform
mode is the one related to corner filaments, on rectangular
We have demonstrated that the competition between spalomains [,>L,) oscillations of both corner filament and
tial and temporal instabilities may give rise to complex spa-edge current layer parallel to thyeaxis are possible.
tiotemporal dynamics of current density patterns in a glo- For fixed domain dimensioris,, L, the type of dynam-
bally coupled bistable semiconductor system on 2D spatiaks is determined by the parametdgsand «, which control
domains. Complex dynamics occurs near the codimensiorthe global level of excitation in the system and the relaxation
two point in the parameter space where the uniform steadjime of the inhibitoru, respectively. In 1D systems complex
state simultaneously experiences a spatial instability leadingpatiotemporal behavior can be observed in a much larger
to the formation of a stationary filament, and a Hopf bifur- range of parameters compared to 2D systems. This is asso-
cation leading to onset of uniform limit-cycle oscillations. ciated with a shift of the upper boundary of the regime cor-
This point is analogous to the codimension-two Turing-Hopfresponding to an oscillatory instability of the stationary fila-
point in the activator-inhibitor mode{1), (2) with purely  ment, see Eq.14): corner filaments on 2D domains are more
local coupling. Semiconductor systems generally exhibitstable with respect to oscillations than edge current layers in
subcritical bifurcations and formation of large-amplitude pat-1D systems. Therefore the transition from 1D domains to 2D
terns [43,39,51,31 which are in many respects different domains is accompanied by a transition from the complex
from small-amplitude patterns that appear in chemical reacmixed mode regiméin 1D) to the regime of bistability be-
tion models with polynomial nonlinearitie$1,2,13,13.  tween stationary patterns and uniform limit-cycle oscillation
Techniques based on an expansion in the vicinity of the uni¢in 2D) for a wide range of parameters. This qualitative dif-
form reference state can describe supercritical bifurcationderence results from quantitative changes in the linear dy-
but fail to provide an adequate description of such subcriticahamics near the stationary spatial pattern: the incremment
patterns. Our approach is based on a linearization of the dyof the first unstable mode decreases in going from 1D to 2D,
namics near both uniform and nonuniforffilamentary  thereby violating the criterioi17) on 2D domains.
states. This leads to a sufficient conditi¢k¥) for complex The described scenarios of complex spatiotemporal be-
dynamics near the codimension-two point: the onset ohavior of current filaments are applicable to bistable systems
mixed spatiotemporal modes is possible if the stationary filawhose internal state can be characterized Isjngle activa-
ment exhibits an oscillatory instability for the parameterstor variablea and whose global inhibition is due to an exter-
corresponding to the codimension-two bifurcation of the uni-nal constraint. Another important mechanism for complex
form state. For the opposite caag<a, we observe bista- behavior occurs in systems with two mechanisms of inhibi-
bility between stationary patterns and uniform oscillations.tion acting on different time and space scales. The corre-
Our model has two codimension-two points near the turninggponding models are globally coupled two-component

V. CONCLUSIONS AND DISCUSSION
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activator-inhibitor system$28,52,53, which are described The analysis of experimental data shows that degenerate bi-
by two internal local variablegactivator and inhibitorand  furcations[49] as well as multiple inhibition51] can play a
one inhibiting global constraint and have local and globalcrucial role in complex dynamics, depending on the charge
mechanisms of inhibition; and three-component activatortransport mechanism in a particular semiconductor system.
inhibitor models[51,54 with three local variables and two

local mechanisms of inhibition. Depending on the hierarchy

of relaxation times and diffusion lengths, complex behavior ACKNOWLEDGMENTS
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