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Competing spatial and temporal instabilities in a globally coupled bistable semiconductor system
near a codimension-two bifurcation

S. Bose,1 P. Rodin,2 and E. Scho¨ll 1

1Institut für Theoretische Physik, Technische Universita¨t Berlin, Hardenbergstrasse 36, D-10623, Berlin, Germany
2Ioffe Physicotechnical Institute, Politechnicheskaya 26, St. Petersburg 194021, Russia

~Received 27 March 2000!

We study complex spatiotemporal dynamics in a globally coupled bistable reaction-diffusion model on a
two-dimensional spatial domain. It is demonstrated that complex behavior appears near a codimension-two
bifurcation point due to the competition of spatial and temporal instabilities. We derive sufficient conditions for
the appearance of mixed spatiotemporal modes, and clarify the origin of a menagery of complex dynamics,
such as periodic and chaotic oscillations of current filaments, low-dimensional spatiotemporal chaos including
a Shil’nikov attractor, and periodic back-and-forth motion of current density fronts. Such dynamics is found in
a wide range of domain sizes for square and rectangular domains. The type of dynamics is sensitive to small
variations in the domain shape. We discuss and explain the differences between spatiotemporal dynamics on
one-dimensional and two-dimensional domains.

PACS number~s!: 05.70.Ln, 72.20.Ht, 85.30.2z
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I. INTRODUCTION

Spatially extended nonlinear dynamic systems may
hibit a variety of different instabilities. Complex spatiotem
poral behavior is expected if an instability breaking the s
tial symmetry interacts with a temporal instability breaki
the time translation symmetry@1–16#. This is the case nea
the codimension-two~CT! bifurcation where those two insta
bilities coincide. Recently the dynamics in the vicinity
such bifurcation points of higher codimension has been
vestigated theoretically@13–16# as well as experimentally
for various physical@9–11# and chemical systems@6–8#. A
widely studied system is given by the following two
component activator-inhibitor system with local diffusiv
coupling @1,2,15,16#

ta

]a

]t
5 l a

2Da1 f ~a,u!, ~1!

tu

]u

]t
5 l u

2Du1g~a,u!, ~2!

where a and u are the activator and the inhibitor, respe
tively, andta , tu andl a , l u determine the respective relax
ation times and diffusion lengths. This system exhibits
codimension-two Turing-Hopf bifurcation@2# where the con-
ditions of a spatial Turing instability@17# with a certain
wavelengthl T;Al al u and a temporal Hopf bifurcation with
a certain frequencyv;1/Atatu are met simultaneously. An
amplitude equation analysis@2,12,15# predicts the appear
ance of mixed Turing-Hopf modes which represent perio
or chaotic oscillations of localized Turing patterns. Perio
mixed Turing-Hopf modes and chaotic transients preced
the periodic asymptotic motion have also been found by
rect numerical simulations on a one-dimensional~1D! spatial
domain@16#.

For a globally coupled system the Turing instability
suppressed, and little is known about the conditions un
PRE 621063-651X/2000/62~2!/1778~12!/$15.00
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which mixed spatio-temporal modes should be found. T
purpose of the present paper is to investigate those co
tions in a bistable system with a global mechanism of in
bition given by an integral constraint imposed on the inter
dynamics:

tu

du

dt
5

1

AEG
dxdy g„a~x,y,t !,u~ t !…, ~3!

where*Gdxdy denotes integration over a spatial domainG
of areaA. Equation~3! replaces the local inhibitor Eq.~2!.

In the model~1!,~3! the inhibitoru(t) is a global variable
depending upon the spatially averaged activatora(x,y,t).
The Hopf bifurcation of the uniform state remains as in t
locally inhibited model~1!, ~2!, but instead of a spatial Tur
ing instability at finite wavelengthl T;Al al u the system
~1!,~3! experiences a long-wavelength instability which m
be regarded as limit case of a Turing instability forl u→`.
The wavelength of the spatial instabilityl G is therefore de-
termined by the system dimensionL, wherel G52L and l G
5L for Neumann and Dirichlet boundary conditions, respe
tively. The length scale of the asymptotic stationary patt
evolving from the initial instability is determined by the glo
bal constraint~3!.

Global coupling has been widely recognized as an imp
tant factor of spatiotemporal dynamics in extended syste
and studied for different models@18–33#. Equations~1!,~3!
represent a basic model of a globally coupled bistable m
dium which is relevant for current density dynamics in larg
area bistable semiconductor systems@29–33# and electro-
chemical systems@27#, where global coupling is due to th
external electric circuit, as well as chemical reaction syste
where global coupling may be light induced@25# or imposed
via the gas phase@22#. In this article we focus on the case o
bistable semiconductors. Then Eq.~1! determines the dy-
namics of an internal, spatially distributed variablea(x,y,t),
wherex,y are the coordinates in the plane perpendicular
the direction of current flowz ~Fig. 1!. The physical meaning
1778 ©2000 The American Physical Society
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FIG. 1. ~a! Sketch of a bistable semiconducto
operated in an external circuit with capacitan
C, load resistanceR and biasU0. ~b!,~c! Null is-
colines of the model Eqs.~6!,~7! in the (a,u)
plane and the corresponding (J,u) representation
in terms of the local current-voltage characteris
J(u) ~curve 1! and the load line~curve 2!, respec-
tively. Parameters:T50.05, J051.25.
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of the variablea might be electron temperature@34# or con-
centration of excess carriers@35# in bulk semiconductors
charge density stored in the quantum well of double-bar
resonant tunneling structures@36,37,33#, interface charge
density in the heterostructure hot electron diode@38#, or the
voltage across one of thepn junctions in thyristors
@39,30,32#, etc. The variablea(x,y) together with the volt-
age dropu across the device determines the current den
J(a,u) at a given point (x,y). The respective uniform sta
tionary current-voltage characteristicJ(u)5J@a(u),u# can
be found using the conditionf (a,u)50 to expressa(u). It
may result in either S-shaped or Z-shaped bistable chara
istics J(u) @33#. The global coupling is due to the extern
circuit in which the semiconductor system is operated, a
Eq. ~3! takes the form of Kirchhoff’s law:

tu

du

dt
5U02u2RA^J~a;u!&, tu[RC,

^J&[
1

AEG
dxdyJ~a,u!, ~4!

whereR is the series load resistance,C is the capacitance o
the external circuit,U0 is the applied voltage, andG is a 2D
spatial domain in the plane perpendicular to the direction
the current flow@see Fig. 1~a!#. The model~1!,~4!, originally
suggested for semiconductors with overheating instabili
@34#, has been later advanced for a wide class of semic
ductor systems exhibiting both S- and Z-shaped bistab
~see Refs.@29,33,40#, and references therein!. In this paper
we focus on S-shaped bistability. The model~1!,~4! can de-
scribe a menagery of spatial and temporal patterns in se
conductors such as current filaments, transverse current
sity fronts, and spatially uniform current oscillations@41#. A
mixed spatiotemporal mode corresponding to lar
amplitude relaxation-type oscillations of a current filame
~spatiotemporal spiking! has also been found in this mod
for 1D spatial domains@38,42#.

The linear stability of stationary current filaments on 2
domains has been studied analytically and numerically@29#
in the framework of the globally coupled model~1!,~4!. Here
we investigate the nonlinear dynamical behavior of 2D c
rent density patterns, in particular in the vicinity of the C
bifurcation point. We derive criteria for the onset of mixe
spatiotemporal modes and illustrate our findings by num
cal simulations of the model on 2D domains. We show t
competition between spatial and temporal instabilities gi
rise to complex spatiotemporal behavior of transverse cur
density patterns such as periodic oscillations of current fi
ments, back-and-forth motion of current density fronts,
well as various regimes of spatiotemporal chaos.
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In the following we assume current-controlled conditio
(R→`, U0→`, U0 /R→J0), since these are known t
provide the most efficient global coupling@29#, and use the
model functions

f ~a,u!5
u2a

~u2a!211
2T a, J~a,u!5u2a, ~5!

originally derived for the heterostructure hot electron dio
@38#. A nonpolynomial local kinetic function as, e.g., in E
~5! is typical for nonlinear charge transport in various sem
conductor systems@34,39,43#. In dimensionless form, ou
model equations~1!,~4! thus take the form

]a

]t
5Da1

u2a

~u2a!211
2T a, ~6!

du

dt
5a~J02u1^a&!, a[A/C. ~7!

Figures 1~b! and 1~c! depict the null isoclines of the system
~6!,~7! in the (a,u) plane, and the equivalent representati
in the (J,u) plane in terms of the S-shaped current-volta
characteristicJ5J(u) and the load-line, respectively. Th
latter representation is physically more intuitive and will
used in the following. We consider rectangular spatial d
mains with transverse dimensionsLx ,Ly and assume Neu
mann boundary conditions. The dynamics is determined
two model parametersa, J0, i.e., the inverse relaxation tim
of the inhibitor u and the imposed current controlling th
general excitation level, respectively, and the domain s
Lx ,Ly . The parameterT controls the bistability range;T
50.05 is used throughout the paper.

The paper is organized as follows. In Sec. II we consi
the fixed points of the model~6!,~7!, i.e., uniform steady
states and stationary current filaments. We discuss sp
and temporal instabilities of those states and derive an a
lytic criterion for the onset of complex spatiotemporal d
namics. In Sec. III we consider fully developed nonline
spatiotemporal dynamics on square domains (Lx5Ly) and
analyze bifurcation scenarios leading to different regimes
intermittent and chaotic behavior. In Sec. IV we focus
spatiotemporal dynamics in rectangular systems (Lx.Ly)
and, in the limit case ofLx@Ly , study dynamics on 1D
domains. Hereby we elaborate and clarify the differences
spatiotemporal dynamics on 1D and 2D domains. In Sec
we summarize our results and briefly survey alternat
mechanisms of complex current density dynamics in bista
semiconductors.
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FIG. 2. ~a! Phase portraits of uniform oscillations forJ051.5, Lx5Ly520, and different values ofa. In the (̂ J&,u) plane spatially
stable and unstable limit cycle oscillations are shown by solid and long dashed lines, respectively, they become stable ata'0.05. The
uniform fixed point~empty circle! is temporally and spatially unstable for the parameters chosen~critical valueau'0.068). The nonuniform
fixed point corresponding to a stationary filament~full circle! loses stability ata'0.0259. The uniform and the nonuniform fixed points a
given by the intersections of the load line^J&5J0 with the uniform~unstable parts: thin dotted line, stable parts: thin solid line! and the
filamentary~thin solid line! current-voltage characteristics, respectively.~b! Phase portrait forJ051.5, Lx5Ly520, a50.023. The trajec-
tory spiralling out of the nonuniform fixed point depicts an oscillatory instability of the stationary filament evolving into a uniform
cycle. ~c! Spatiotemporal plot of the trajectory depicted in~b!. The current densitŷJ(x,y,t)&y averaged over they coordinate is shown.
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II. FIXED POINTS AND THEIR BIFURCATIONS

A. Uniform steady state

In this section we consider spatially uniform and nonu
form fixed points of our system and analyze their possi
bifurcations. The uniform steady state (a0 ,u0) is given by
f (a0 ,u0)50, J(a0 ,u0)5J0 and corresponds to the interse
tion of the load line with the uniform current-voltage cha
acteristic @Fig. 1~b!#. A linear stability analysis of Eqs
~6!,~7! shows~e.g., Ref.@41#! that this state is unstable wit
respect to spatially inhomogeneous fluctuations leading
stationary current filament if

S p

L D 2

,]af , ]af u(a0 ,u0)[
J0

221

~11J0
2!2

2T,

L[max@Lx ,Ly#. ~8!

The condition]af .0 is met for the middle branch of th
current-voltage characteristic@29# which is consequently un
stable for sufficiently largeL. The minimum system sizeL
5Lcr(J0)5p/A]af which allows for a transverse instabilit
depends onJ0. A transverse instability is never possible f
L,Lmin511.5 for the value ofT50.05 chosen. ThusLmin
has the meaning of a critical transverse diffusion length
represents a natural scale for the sizeLx , Ly of the spatial
domain.

The uniform steady state (a0 ,u0) may also experience
Hopf bifurcation leading to uniform limit-cycle oscillation
if the relaxation time of the inhibitora21 is sufficiently slow
@41#, i.e., for

a,]af . ~9!

We denote the critical value byau(J0)[]af . The oscillation
amplitude increases with decreasinga @Fig. 2~a!#, and even-
tually typical nonlinear relaxation oscillations are esta
lished. These uniform limit-cycle oscillations can be unsta
with respect to transverse spatial perturbations. Let us lin
ize Eqs. ~6!,~7! in the vicinity of the limit cycle solution
ã(t), ũ(t), assuminga(x,t)5ã(t)1da(t)cos(pnx/L), u(t)
-
e

a

d

-
e
r-

5ũ(t)1du(t), whereda(t),du(t) are the amplitudes of per
turbations with wave vectork5pn/L, wheren is an integer.
This yields

d

dt
da~ t !5F]af̃ ~ t !2S pn

L D 2Gda1]uf̃ ~ t !du,

]a,uf̃ ~ t ![]a,uf „ã~ t !,ũ~ t !…, ~10!

d

dt
du~ t !52a du. ~11!

Here]af̃ (t) and]uf̃ (t) are periodic functions in time. Sinc
the relaxation dynamics ofdu is uncoupled fromda, a suf-
ficient condition for spatial instability of the limit cycle ca
be written as

S p

L D 2

,]af̃ ~ t !. ~12!

Note that Eq.~12! resembles Eq.~8!. If condition ~12! is
satisfied for the uniform fixed point (a0 ,u0), it is also satis-
fied for uniform limit cycles of sufficiently small amplitude
which have bifurcated from this fixed point. Therefore sma
amplitude limit cycles near the bifurcation threshold are
ways spatially unstable. For limit cycles of arbitrary amp
tude the sign of]af̃ 2(p/L)2 is not fixed and one should
apply a Floquet analysis, or simply integrate Eq.~10! over
one period to evaluate stability. For the limit case of larg
amplitude relaxation oscillations witha!]af the spatial sta-
bility can be demonstrated by the following Heuristic arg
ment. For such oscillations one cycle in phase space con
of slow stages corresponding to relaxation ofu along the
stable branches of the uniform current-voltage character
a5aon(u) and a5aoff(u), and fast stages corresponding
fast relaxation ofa at u5const. Since]af ,0 for a5aon,off
and the contribution of fast stages can be neglected w
integrating Eq.~10! over one period, we see that the pertu
bationda decreases. The transition from spatially unstable
spatially stable limit cycles with increasing amplitude is
lustrated in Fig. 2~a!. Figures 2~b!, 2~c! visualizes the tran-
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FIG. 3. Stationary corner filament~a! and
edge current layer~b!, and the associated curren
voltage characteristics forLx5Ly520 ~c! and
Lx5Ly550 ~d!. Branches corresponding to tran
versally unstable edge current layers are mark
by dotted lines. The uniform S-shaped curren
voltage characteristic is also shown.
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sient leading from a temporally unstable stationary filam
to a stable uniform limit cycle.

B. Stationary current filaments

The stationary current filament bifurcating from the un
form steady state according to Eq.~8! may be stable or un
stable. A necessary condition for stability of a filament on
convex 2D domain in the regime of strong global coupli
(R→`) is that the differential conductance of the filame
sd[A(d^J&/du) is negative and the extrema of the curre
density distribution are located at the boundary of the
main @29#. Multifilamentary states~with several extrema! are
unstable according to the winner-takes-all principle@20#;
filaments with an extremum inside the domain are unsta
with respect to translation and are eventually attracted by
boundaries@29#. On a rectangular domain stationary curre
density configurations are either corner filaments@Fig. 3~a!#
or edge current layers@Fig. 3~b!#. The respective current
voltage characteristics are shown in Figs. 3~c!,3~d! for two
different systems sizesLx5Ly520 and Lx5Ly550. The
corner filament is stable in the whole interval of curren
With increasing system size the continuous branch of
current-voltage characteristic@Fig. 3~c!# splits into two sepa-
rate branches corresponding to a hot~high current density!
corner filament and a cold~low current density! corner fila-
ment @Fig. 3~d!#. The edge current layer is unstable wi
respect to spatial perturbations which break the uniformity
the current density distribution along they axis, transforming
the edge current layer into a corner filament if its different
conductancesd is sufficiently low. Unstable parts of th
current-voltage characteristic are shown in Figs. 3~c!,3~d! by
dotted lines. On rectangular domains (Lx.Ly) one should
distinguish between edge current layers parallel to the l
and short edge, respectively. Generally, the latter ones
more stable. ForLy,Lmin only edge current layers parallel t
the short edge are possible and, generally, any type of cu
density distribution becomes uniform along they axis which
renders spatiotemporal dynamics effectively one dim
sional. The type of bifurcation leading to a stationary curr
filament depends on the system dimensions. ForLx ,Ly close
to Lmin this bifurcation is supercritical as a function of th
t
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control parameterJ0, and the stationary patterns have sm
modulation amplitudes. With increasingL the bifurcation be-
comes subcritical, resulting in large-amplitude patterns~e.g.,
see Refs.@44,45#!. Sweeping the currentJ0 up and down
then leads to hysteresis@see Figs. 3~c!,3~d!#. It is important
to note that large-amplitude patterns arising via subcriti
bifurcations cannot be appropriately described by analyt
techniques based on expansions near the uniform refer
state (a0 ,u0), such as the amplitude equation formalism.

The linearized dynamics near the nonuniform station
patterns will be shown to have a crucial impact on the p
sibility of complex spatiotemporal behavior, and we sh
now discuss it in some detail. Both corner filaments and e
current layers are unstable in the voltage-controlled regi
This instability is due to a single unstable eigenmo
C1(x,y) with eigenvaluel1.0 @29#, corresponding to the
‘‘ground state.’’ HenceC1(x,y)>0 and it is associated with
expansion or shrinking of the current filament. The seco
eigenmode C2(x,y) has a negative eigenvaluel2,0.
C2(x,y) changes sign in the interior ot the domain~e.g., on
a 1D domain it has one node! and corresponds to softenin
or sharpening of the current density profile near the filam
border. SinceC2(x,y) is not of fixed sign, it cannot be ef
fectively suppressed by an integral constant. In particu
this mode describes the very last stage of current filam
growth from the uniform state. In the presence of glob
coupling the eigenvalues generally become complex. T
modesC i are then mixed by coupling, but they still provid
intuitive insight into the linearized dynamics of the global
coupled system@29#. In the regime of strong global couplin
~as forR→`) the first modeC1(x,y) is suppressed by the
global constraint imposing conservation of the total curre
but for sufficiently smalla an oscillatory instability due to
the delay in the inhibition is possible. If only the lowes
unstable eigenmodeC1(x,y) is taken into account, the gen
eral criterion for the oscillatory instability of a current fila
ment described by Eqs.~1!,~4! is given by@29#

2su1Cl1 /ta.R21, su[A^]uJ~a,u!&. ~13!

For our model~6!,~7! this criterion takes the simple form
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a,l1 . ~14!

We denote the critical values byl1[a f
c(J0 ,L) and

a f
e(J0 ,L) for corner filaments and edge current layers,

spectively. In the one-mode approximation the eigenvaluel1
is connected to the differential conductance of a filamentsd
by the approximate expression

sd'su2A
^]uf •C1&^]aJ•C1&

l1
. ~15!

@Note that Eqs.~14!, ~15! are also applicable to the uniform
state on the middle branch of the current-voltage charac
istic; in this caseC1[1, l1[]af .# For a sufficiently large
system, on the middle part of the filamentary branchsd is
negative and of large absolute value, and thereforel1 is
small. The physical reason for this is as follows: the curr
filament has a sharp profile with a narrow transition lay
connecting flat on- and off-states. In an infinite system s
a profile would be of neutral stability (l150) due to trans-
lation invariance. In a finite systeml1 becomes positive due
to the interaction with the boundaries, but remains small.
a result, an oscillatory instability of such a nonunifor
steady state occurs fora f5l1, which is smaller than the
critical valueau5]uf leading to an oscillatory instability o
the uniform state. Thus fora f,a,au there is bistability
between a stationary filament and uniform relaxation osci
tions. With decreasinga the stationary filament experience
an oscillatory instability, but in general the current dens
oscillations eventually become uniform, and no comp
spatiotemporal behavior arises@29,30,33#. This scenario
should be regarded as typical for the oscillatory instability
a stationary filament@Figs. 2~b!,2~c!#.

However, this conclusion holds only for wide filamenta
patterns with sharp boundaries and is not applicable to
row filaments whose differential conductancesd might be
comparable to that of the uniform unstable branch of
current-voltage characteristic@see Figs. 3~c!,3~d!#. For such
narrow filaments both situationsa f,au andau,a f are pos-
sible. Also, a stationary filament might be stable with resp
to small perturbations (a.a f) but unstable with respect t
sufficiently large ones. In this case its basin of attraction
bounded by an unstable periodic orbit which correspond
a breathing filament. This case has been discussed in det
Ref. @42# for 1D domains.

C. Codimension-two point in the parameter space

The conditions for spatial~8! and temporal~9! instabili-
ties of the uniform fixed point may coincide in
codimension-two~CT! bifurcation point denoted by a supe
script star:

a!5au~J0
!!5S p

L D 2

. ~16!

For givenL5max(Lx ,Ly)5Lcr this happens for two value
J0

! which are defined by Eq.~8! and located near the turnin
points of the current-voltage characteristic atJ051.12 and
J054.09, respectively@see Fig. 4~a!#. Periodic or chaotic
-
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mixed spatiotemporal modes appear near the CT point if
following condition is met:

au
!,a f

c,e~J0
! ,L ! ~17!

for both corner filament and edge current layers. Indeed
the criterion ~17! is satisfied there is a parameter windo
au

!,a,a f
c,e(J0

! ,L) where the uniform state is spatially un
stable~but temporally stable with respect to uniform fluctu
tions! and the stationary filament is temporally unstable, th
the system has no fixed point attractors.

The dependenciesa f
c,e@J0 ,Lcr(J0)# have been calculated

numerically at the CT point for corner and edge filaments
square domain and are shown together withau(J0) in Fig.
4~b!. The criterion~17! is met only near the left one of th
two CT points, which corresponds to the lower value of c
rent J0

!. In Fig. 4~c! the critical values
a f

c,e@J0
!(L),L#, au@J0

!(L)# calculated at the CT point ar
presented as functions ofL. The criterion~17! is satisfied in
the interval 14,L,270. This implies that complex spa
tiotemporal behavior occurs neither for small-amplitude p
terns atL;Lmin nor in large systemsL@Lmin . Generally,
a f /au→0 for L→` since the asymptotic behavior ofa f

;exp(2L/Lmin) is exponential@29# but au@J0
!(L)# decays

algebraically asL22.
The criterion~17! can be also reformulated without dire

reference to the CT point. For givenJ0 andLx ,Ly complex
spatiotemporal behavior occurs if

FIG. 4. ~a! Minimum system sizeLcr5p(]af )21/2 allowing for
a spatial instability of the uniform steady state as a function ofJ0.
~b! Thresholds for oscillatory instabilities of the uniform fixed poi
@au(J0), curve 1#, corner filaments„a f

c@J0 ,Lcr(J0)#, curve 2… and
edge current layers„a f

e@J0 ,Lcr(J0)#, curve 3… as a function of the
current densityJ0 for 2D square domains. The threshold values
a are shown at both codimension-two points.~c! Thresholds for
oscillatory instabilities of the uniform fixed point„au@J0

!(L)#, curve
1…, corner filaments@a f

c@J0
!(L),L#, curve 2# and edge current layer

„a f
e@J0

!(L),L#, curve 3… as a function of the system sizeL5Lx

5Ly at the lower codimension-two point~double-logarithmic plot!.
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au~J0!,a,a f
e,c~J0 ,L ! and L.Lcr~J0!. ~18!

In the opposite casea f
e,c,a,au we expect bistability be-

tween a stationary filament and uniform oscillations but
mixed modes.

The criteria~17!, ~18! representsufficientbut not neces-
sary conditions for the onset of complex spatiotemporal d
namics. Generally, complex dynamics can also occur
a f,au if the stationary filament is stable only with respe
to small fluctuations but unstable with respect to large on
~which implies an unstable periodic orbit forming the boun
ary of its basin of attraction!. Complex dynamics can als
result from the spatial instability of uniform limit-cycle os
cillations but not of the uniform fixed point and can th
occur for a,au,a f . Special attention should be given
the situation when Eq.~17! is satisfied only for one type o
stationary patterns. Despite these restrictions, the crit
~17!, ~18! are important for understanding the origin of com
plex spatiotemporal dynamics. In the following sections
will compare our theoretical predictions based on these
teria with numerical simulations, and will show that the c
terion ~17! always applies.

III. COMPLEX SPATIOTEMPORAL DYNAMICS
ON SQUARE DOMAINS

A. Survey of different regimes in the parameter space

In this section we survey spatiotemporal dynamics
square domainsLx5Ly5L. Equations ~6!,~7! have been
solved numerically using slight perturbations of the unsta
uniform state (a0 ,u0) as initial condition. The regime in the
parameter space (J0 ,a,L) where complex current densit
dynamics—both periodic and chaotic—is found is hatched
Fig. 5. This regime is located in the vicinity of the curve
codimension-two points~16! where spatial~8! and temporal
~9! instabilities of the uniform fixed point coincide. In acco
dance with our theoretical prediction, complex spatiotem
ral behavior occurs only near the CT points correspondin
the lower value ofJ0

!, where the condition~17! is met, i.e.,
near the right turning point of the S-shaped current-volta
characteristic@Fig. 1~c!#.

FIG. 5. Regime of complex spatiotemporal dynamics~hatched!
in two projections of the (J0 ,a,L) parameter space for square d
mainsL5Lx5Ly . The curve of codimension-two points, Eq.~16!,
is shown as the solid line without circles.
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Complex spatiotemporal dynamics on square domain
always associated with a corner filament: the current den
distribution is symmetrical along the diagonal of the doma
and the maximum is located in one of the corners. The
namics generally includes two coupled modes: a nonunifo
mode associated with a stationary~not necessarily stable!
filament and a uniform mode associated with damped
limit-cycle oscillations. This indicates the low dimension
character of spatiotemporal dynamics.

Figure 6 gives a more detailed account of the differe
regimes of dynamic behavior. Figure 6~a! specifies points in
the (a,J0) parameter space where stationary filaments, u
form limit cycle oscillations, and periodic or chaotic sp
tiotemporal dynamics are found forLx5Ly520. The bound-
aries of the spatial~curve 1! and temporal ~curve 2!
instability of the uniform fixed point, of the spatial instabilit
of uniform oscillations~curve 3! and of the temporal insta
bility of stationary corner filaments~curve 4! are also shown.
The location of these boundaries clearly indicates that co
plex spatiotemporal dynamics occurs due to the spatial in
bility of the uniform fixed point at the left boundary, and v
instability of the uniform limit-cycle oscillations at the lowe
boundary. The corresponding boundaries of stability~curves
1 and 3, respectively! strictly coincide with the respective

FIG. 6. Regimes of complex spatiotemporal dynamics in
(a,J0) plane. The boundaries of spatial instability of the unifor
steady state (a0 ,u0) ~curve 1!, Hopf bifurcation of the uniform
steady state~curve 2!, spatial instability of uniform limit-cycle os-
cillations ~curve 3!, and oscillatory instability of stationary curren
filaments ~curve 4! are indicated.~a! 2D square domainLx5Ly

520 ~corner filaments!. ~b! quasi-1D domainLx520, Ly55 ~edge
current layers!. ~c! Rectangular domain withLx520, Ly515; the
spatiotemporal dynamics is effectively 1D~edge current layer
mode! for small a and 2D~corner filament mode! for largea.
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FIG. 7. Spatiotemporal dynamics visualized by phase portraits (^J&,u), spatiotemporal plots of the current density^J(x,y,t)&y averaged
over they coordinate, and time series of the voltageu(t). ~a! Periodic breathing,~b! periodic spiking of a corner current filament on a 2
square domain (Lx5Ly520, a50.04). Parameters~a! J051.29, ~b! J051.21.
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boundaries of the numerically found regime of complex d
namics for allL. At the upper boundary the transients
complex behavior are associated with the oscillatory insta
ity of a stationary filament. However, the respective curv
does not exactly coincide with the boundary of complex d
namics for L520. This indicates that the instability of
stationary filament occurs via a subcritical Hopf bifurcatio
and there is bistability between a stationary filament and
riodic oscillations of a filament. For smallerL ~e.g.,L518)
this bifurcation becomes supercritical and the regime of
stability disappears. With increasingL the regime of com-
plex spatiotemporal dynamics in the parameter space shr
but the relative fraction corresponding to bistability expan
Complex dynamics does not occur forL*270.

Note that the phase diagrams in Fig. 6 depict only
asymptotic dynamics which can be reached using the
form state as an initial condition. For some parameters
system exhibits bistability between different asymptotic
gimes. Using a stationary filament as initial condition, o
can detect bistability between stationary filaments and p
odic oscillations of current filaments, as mentioned abo
and bistability between periodic oscillations of current fi
ments and stable uniform limit cycles. The latter occurs o
in a small regime of parameters near the intersection of cu
4 ~temporal instability of current filament! and curve 3~spa-
tial instability of uniform limit-cycle oscillations!. Generally,
domains of bistability are found to be small compared to
whole regime of complex spatiotemporal dynamics. In
following subsections we describe periodic and chao
modes of complex spatiotemporal dynamics which can
observed on square domainsLx5Ly .

B. Periodic spatiotemporal dynamics

Periodic spatiotemporal modes may occur asbreathingor
spikingcurrent filaments@Figs. 7~a! and 7~b!, respectively#.
It is illustrative to visualize the different types of spatiotem
poral dynamics in terms of their orbits in the projected ph
space (̂J&,u), in addition to invoking spatiotemporal plot
and time series.

Periodic breathing represents a limit-cycle oscillation
the current filament amplitude@Fig. 7~a!#. In the parameter
space periodic breathing follows upon stationary filame
with decreasinga and/orJ0. The Hopf bifurcation of a sta-
tionary filament leading to the onset of breathing can
either supercritical or subcritical. In the case of a superc
cal bifurcation the amplitude of the breathing modeA in-
-

l-
4
-

,
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e
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e
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e

e
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e
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crease asA;AJ0
cr2J0. In the case of a subcritical bifurca

tion the onset of breathing occurs with finite amplitude a
the stationary filament remains stable: in this case a st
breathing limit cycle appears simultaneously with an u
stable breathing limit cycle which bounds the basin of attr
tion of the stable stationary filament.

Periodic spiking denotes the periodic formation and s
sequent disappearance of a current filament@Fig. 7~b!#. Typi-
cally, between two spikes uniform small-amplitude damp
oscillations occur. In the parameter space spiking appe
with increasingJ0 following the uniform state@Fig. 6~a!#.
Spiking is found when the uniform fixed point is spatial
unstable@L.Lcr(J0)# but experiences no oscillatory insta
bility. The stationary filament can be either unstable or sta
for the parameters corresponding to spiking. In the first c
the spiking mode is the only attractor, in the latter case th
is bistability between two asymptotic states with differe
basins of attraction, but quasi-uniform initial conditions a
ways lead to spiking.

Since the breathing mode results from a Hopf bifurcat
of the stationary filament, it does not essentially interact w
uniform modes related to damped or self-sustained osc
tions. In contrast, spiking emerges from a spatial instabi
of the uniform steady state and its spatiotemporal dynam
may include slow linear stages when the current density
tribution is nearly uniform. During those stages the system
sensitive to noise, and in large systems the period betw
spikes is likely to be determined by noise rather than by
internal dynamics. By changing the parameters, one can
tinuously transform breathing and spiking into each other
for instance in the left upper corner of the phase diagram
Fig. 6~a!, or induce chaotic dynamics. Chaotic scenarios w
be discussed in the next subsection. Breathing is the o
type of spatiotemporal dynamics which is observed forL
close toLmin , whereas spiking prevails with increasingL.

Breathing has been previously reported to occur in ot
models for current filamentation in semiconductors@46,47#,
with modifications which include drift terms with first orde
spatial derivatives in Eq.~1!. Within the universality class
covered by model~1!,~4! it has been observed before only
1D simulations with a concentration-dependent diffusion
efficient@48#. Spiking has been originally obtained in@38,42#
on 1D domains. It has also been found experimentally@49#.

C. Chaotic spatiotemporal dynamics:
Period doubling, Shil’nikov chaos, and intermittency

Both breathing and spiking may become chaotic via
riod doubling @Figs. 8~a! and 8~b!, respectively#. Breathing



ath-

ds
ics
s

n-

bal

the
-

ic
red
the

o-
t

table
ow
pli-
uni-

m.
atial
tary
eter
la-
it

ior

-
nt

-

te

PRE 62 1785COMPETING SPATIAL AND TEMPORAL . . .
FIG. 8. ~a! Chaotic breathing,~b! chaotic spiking of a corner
filament on a 2D square domain (Lx5Ly520, a50.04). Param-
eters~a! J051.27,~b! J051.23.~c! Special case of chaotic breath
ing due to a homoclinic orbit~Shil’nikov chaos!. The saddle-focus
corresponds to a weakly unstable stationary filament. Parame
J051.302, a50.0368, Lx5Ly520. Same plots as in Fig. 7.
 a-

s

exhibits period doubling with decreasinga if J0 is suffi-
ciently large, and spiking does so with increasingJ0 if a is
sufficiently small~see phase diagram in Fig. 6!.

In the parameter regime corresponding to chaotic bre
ing there is a window where Shil’nikov chaos@50# is found
~Fig. 8!. In this window the stationary filament correspon
to a homoclinic saddle focus. The spatiotemporal dynam
in the vicinity of this fixed point can be understood in term
of linear eigenmodes of the stationary filamentC1(x,y) and
C2(x,y). The oscillatory instability is associated with an u
stable (l1.0) ground-state eigenmodeC1, corresponding
to the voltage-controlled regimeu5const. In the globally
coupled regime, this mode is not suppressed by the glo
constraint for sufficiently slow inhibition (a,l1), and two
complex conjugate eigenvaluesg6 iv with g.0 arise. The
stable manifold of the saddle-focus is associated with
stable (l2,0) eigenmodeC2 which dominates the forma
tion of a current filament. Near the bifurcation pointa'a f

the spiralling-out of the trajectory from the homoclin
saddle-focus along the unstable manifold is slow compa
to the return along the stable manifold, and therefore
Shil’nikov condition @50# g,ul2u holds, which ensures the
existence of a chaotic attractor in the vicinity of the h
moclinic orbit. The full dynamics includes two differen
stages, corresponding to motion along the stable and uns
manifolds of the saddle focus, respectively. The first, sl
stage corresponds to breathing with slowly increasing am
tude; eventually the amplitude of breathing reaches the
form fixed point in the projected phase space (^J&,u), and
the current density distribution becomes almost unifor
During the next stage a rapid increase of transverse sp
perturbations returns the system to the unstable filamen
state. Such behavior can be observed in the tiny param
regime near the point where the conditions for temporal fi
ment instability and transverse spatial instability of a lim
cycle coincide.

At the lower boundary of the regime of complex behav
@Fig. 6~a!# chaotic dynamics emerges viaintermittency@Figs.
9~a!,9~b!# due to the spatial instability of the uniform limit
cycle. Near the bifurcation line the respective intermitte
regime resembles chaotic spiking@Fig. 9~a!, see also Fig.
8~b!#. A similar intermittent regime has been found and an
lyzed in 1D simulations@42#. More sophisticated dynamic

rs:
cycle.
fila-
FIG. 9. ~a! Intermittent spiking of a corner filament on a 2D square domain induced by a spatial instability of a uniform limit
Parameters:J051.25, a50.032, Lx5Ly520. ~b! Low-dimensional chaos induced by a temporal saddle-type instability of a corner
ment combined with a spatial saddle-type instability of a uniform limit cycle. ParametersJ051.28, a50.035, Lx5Ly520. Same plots as
in Fig. 7.
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sets on if an oscillatory instability of the stationary filame
also comes into play@Fig. 9~b!#. In this case the system ha
two saddle orbits with slow motion along their respecti
unstable manifolds: a spatially unstable uniform limit cyc
and a temporally unstable filament. Quasiuniform perio
oscillations and a breathing current filament with increas
amplitude alternate at random. The example shown in
9~b! combines features of both Shil’nikov chaos@Fig. 8~b!#
and intermittency@Fig. 9~a!#. Whereas in the vicinity of the
uniform limit cycle the dynamics looks as in the interm
tency regime, in the vicinity of the saddle focus correspo
ing to the stationary filament we observe the relatively sl
oscillatory escape and fast return of the trajectory typica
Shil’nikov chaos@Fig. 8~b!#. The parameters correspondin
to Fig. 9~b! have been specifically choosen to visualize
structure of the chaotic attractor in the most transparent w
the system has a heteroclinic orbit connecting the saddle
cus with the saddle limit cycle. Nevertheless, in the gene
case the presence of two saddle orbits provides the basi
a variety of chaotic scenarios which dominate in the para
eter regime corresponding to chaos forL520.

D. Limit-cycle oscillations of a current density front

The regime of parameters corresponding to complex s
tiotemporal dynamics shrinks asL increases~see Fig. 5!, and
the periodic spiking mode is the only one to survive in lar
systems. The spiking mode then starts to include expan
and shrinking of the filament as an intermediate stage
tween its nucleation and disappearance. For large sys
(L@Lmin) the dynamics takes a well-pronounced form
back-and-forth motion of current density fronts~Fig. 10!.
This limit-cycle consists of four stages: first, the unifor
intermediate state (a0 ,u0) looses stability with respect to
transverse spatial perturbations and a small nucleus of
on-state~with characteristic sizeLmin) embedded in the off-
state is formed. In the second stage, the on-state expand
the propagation of a current density front. The expansion

FIG. 10. Periodic back-and-forth motion of a current dens
front on a 2D square domain. ParametersLx5Ly5150, a
50.005, J051.13. In the simulation spatially random persiste
noise ~amplitude da50.0001, interval between perturbationsdt
51000) is added to trigger the instability of the uniform state. T
3D snapshots of the current density profileJ(x,y) are shown for
times t515 300, 15360, 15 430, 15 500, 15 600, 15 700, 15 80
15 900, 16 000, 16 100, 16 300~from upper left to lower right!. The
phase portrait (̂J&,u), and the time seriesu(t) is also depicted.
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the on-state continues approximately as long asu is larger
than a critical valueuc which is correlated with the radius o
the stationary corner filament~see Refs.@46,20# for a similar
case in a drift-diffusion model!. In the third stage, the volt-
ageu drops belowuc and the direction of front propagatio
is reversed: now the on-state shrinks and finally disappe
For planar fronts an analogous scenario exists, anduc corre-
sponds to the voltageuco where the on- and off-states coexi
with a planar boundary; it is defined by the equal areas r
@33,35#

E
aoff

aon
f ~a,uco!da50. ~19!

Here aon, aoff are the values of the variablea for on- and
off-states, respectively. In the last stage, the dynamics
quasi-uniform and the system returns from the off-state to
initial unstable state (a0 ,u0). The relaxation of the curren
density distribution to the quasiuniform state is faster th
the relaxation of the voltageu, hence during the last stage o
the limit cycle the phase trajectory closely follows the o
branch of the current-voltage characteristic. The nonunifo
component of the current density distribution decreases
becomes very small when the system eventually reaches
unstable uniform state (a0 ,u0). As a result, the subsequen
onset of the transverse instability is slow and the inter
between consecutive spikes is large in comparison with
duration of a single spike. This implies that the period
actually determined not by internal dynamics but by pers
tent noise which should be taken into account in a reali
model.

Previously@30,32,33# we suggested that in bistable sy
tems with one global constraint a purely temporal oscillato
instability of a current density front generally does not le
to limit-cycle motion of the front but eventually evolves int
uniform oscillations. In contrast, our present findings rev
that limit-cycle front oscillations are possible ne
codimension-two points both on 2D and 1D domains.

IV. COMPLEX SPATIOTEMPORAL DYNAMICS ON
RECTANGULAR DOMAINS

On rectangular domains (Lx.Ly) mixed spatiotempora
modes can be associated with both corner filaments@Fig.
3~a!# and edge current layers@Fig. 3~b!# parallel to they axis.
For Ly,Lmin the current density is always uniform along th
y axis rendering the dynamics effectively one-dimensiona

Let us now consider dynamics on 1D domains in mo
detail. We recall that filaments on a 1D domain of lengthLx
can be identified with edge current layers on a correspond
2D domain withLx@Ly . Complex spatiotemporal dynamic
on 1D domains is found in a much larger parameter reg
than on 2D domains with the sameLx @see Fig. 6~b!#. This is
entirely due to the shift of the upper boundary~curve 4!,
which is associated with the temporal instability of the s
tionary filament. This shift means that corner filaments
2D domains are more stable with respect to oscillations t
1D edge current layers for the same value ofJ0 : a f

c.a f
e , as

can be seen in Fig. 4~b! in the relevant range ofJ0. This also
follows from the current-voltage characteristics shown
Fig. 3 since the eigenvalues are connected to the differen

t
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conductancesd via Eq. ~15!. As a result, the sufficient con
dition for complex behaviora f.au can be met for 1D but
violated for the corresponding 2D domain. We emphas
that the major difference in global dynamics on 1D and
domains is caused by quantitative changes in the linear
namics near the stationary spatial structure, rather than
the uniform state (a0 ,u0).

Any 1D mode of complex spatiotemporal dynami
which occurs for a givenLy,Lmin also exists for anyLy
.Lmin . Those 1D modes have been found transversally
stable forLx<Ly . However, they may become stable f
Lx.Ly.Lmin . A typical phase diagram for a rectangul
domain is shown in Fig. 6~c!. The regime of complex spa
tiotemporal behavior is a subset of the respective regime
the 1D system with the sameLx @Fig. 6~b!#. Both 1D and 2D
modes are possible. 1D oscillations of edge current lay
occur for low values ofa @Fig. 6~c!#. With increasinga we
observe chaotic and periodic breathing of corner filame
and the upper boundary of this regime matches the boun
of stability of the corner filament rather than that of the ed
current layer. The transition from 2D complex oscillations
corner filaments to 1D complex oscillations of edge lay
starts when the deviation from the square shape is s
@(Lx2Ly)!Lx ,Ly# and is associated with an abrupt chan
of the type of spatiotemporal behavior, e.g., chaotic osci
tion may be substituted by periodic ones, and vice ve
This might indicate that spatiotemporal behavior on 2D d
mains is generally not robust with respect to small variatio
of the domain shape.

V. CONCLUSIONS AND DISCUSSION

We have demonstrated that the competition between
tial and temporal instabilities may give rise to complex sp
tiotemporal dynamics of current density patterns in a g
bally coupled bistable semiconductor system on 2D spa
domains. Complex dynamics occurs near the codimens
two point in the parameter space where the uniform ste
state simultaneously experiences a spatial instability lead
to the formation of a stationary filament, and a Hopf bifu
cation leading to onset of uniform limit-cycle oscillation
This point is analogous to the codimension-two Turing-Ho
point in the activator-inhibitor model~1!, ~2! with purely
local coupling. Semiconductor systems generally exh
subcritical bifurcations and formation of large-amplitude p
terns @43,39,51,31# which are in many respects differen
from small-amplitude patterns that appear in chemical re
tion models with polynomial nonlinearities@1,2,13,15#.
Techniques based on an expansion in the vicinity of the u
form reference state can describe supercritical bifurcatio
but fail to provide an adequate description of such subcrit
patterns. Our approach is based on a linearization of the
namics near both uniform and nonuniform~filamentary!
states. This leads to a sufficient condition~17! for complex
dynamics near the codimension-two point: the onset
mixed spatiotemporal modes is possible if the stationary fi
ment exhibits an oscillatory instability for the paramete
corresponding to the codimension-two bifurcation of the u
form state. For the opposite casea f,au we observe bista-
bility between stationary patterns and uniform oscillatio
Our model has two codimension-two points near the turn
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points of the S-shaped current-voltage characteristic@see Fig.
1~c!#, but the condition~17! is met only near the one with th
lower value ofJ0.

The nonlinear dynamics has been studied numerically
square and rectangular 2D domains, including as a limit c
1D domains. In all cases complex spatiotemporal dynam
combines only two modes: the nonuniform mode related t
stationary current filament, i.e., a corner filament or an e
current layer, and a uniform mode related to damped
limit-cycle uniform oscillations. We have found three maj
types of periodic and chaotic spatiotemporal behavior:~i!
periodicbreathingof a current filament which appears as
result of a subcritical or supercritical oscillatory instability
a stationary filament and may evolve into a chaotic mode
period doubling;~ii ! spikingof a current filament which re-
sults from the spatial instability of either the uniform stea
state or uniform limit cycle oscillations. A special case
chaotic breathing appears when the system has a homoc
orbit which is connected to a saddle focus corresponding
weakly unstable stationary filament~Shil’nikov attractor!.
Another type of chaotic oscillations appears when t
saddle-orbits—temporally unstable filament and spatially
stable uniform limit cycle—interact.~iii ! We have also found
periodic limit-cycle oscillations of current-density fronts r
sulting from a spatial instability of the uniform steady sta
in large systems.

We have shown that spatiotemporal spiking, which h
previously been found only in 1D simulations of the mod
~6!,~7! @38,42,49#, is part of a much wider class of comple
spatiotemporal modes which have been reported here for
first time. On square domains (Lx5Ly) the only nonuniform
mode is the one related to corner filaments, on rectang
domains (Lx.Ly) oscillations of both corner filament an
edge current layer parallel to they axis are possible.

For fixed domain dimensionsLx , Ly the type of dynam-
ics is determined by the parametersJ0 anda, which control
the global level of excitation in the system and the relaxat
time of the inhibitoru, respectively. In 1D systems comple
spatiotemporal behavior can be observed in a much la
range of parameters compared to 2D systems. This is a
ciated with a shift of the upper boundary of the regime c
responding to an oscillatory instability of the stationary fil
ment, see Eq.~14!: corner filaments on 2D domains are mo
stable with respect to oscillations than edge current layer
1D systems. Therefore the transition from 1D domains to
domains is accompanied by a transition from the comp
mixed mode regime~in 1D! to the regime of bistability be-
tween stationary patterns and uniform limit-cycle oscillati
~in 2D! for a wide range of parameters. This qualitative d
ference results from quantitative changes in the linear
namics near the stationary spatial pattern: the incremenl1
of the first unstable mode decreases in going from 1D to
thereby violating the criterion~17! on 2D domains.

The described scenarios of complex spatiotemporal
havior of current filaments are applicable to bistable syste
whose internal state can be characterized by asingleactiva-
tor variablea and whose global inhibition is due to an exte
nal constraint. Another important mechanism for comp
behavior occurs in systems with two mechanisms of inh
tion acting on different time and space scales. The co
sponding models are globally coupled two-compon
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1788 PRE 62S. BOSE, P. RODIN, AND E. SCHO¨ LL
activator-inhibitor systems@28,52,53#, which are described
by two internal local variables~activator and inhibitor! and
one inhibiting global constraint and have local and glo
mechanisms of inhibition; and three-component activa
inhibitor models@51,54# with three local variables and tw
local mechanisms of inhibition. Depending on the hierarc
of relaxation times and diffusion lengths, complex behav
in the form of traveling@28,54#, breathing@52#, or spiking
filaments@51# is found. These mechanisms of complex b
havior are not related to degenerate bifurcations and ca
expected to be more robust, but they are generally base
much more specific models and are therefore less unive
g,
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The analysis of experimental data shows that degenerat
furcations@49# as well as multiple inhibition@51# can play a
crucial role in complex dynamics, depending on the cha
transport mechanism in a particular semiconductor syste
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